“人體芯片”系統是一些模型,能夠再現器官或一系列器官如何在身體內起作用。想要獲得可以重現人體各項功能的人體芯片系統,就必須研制出這些神經肌肉結點。大腦使用這些結點與身體內的肌肉相互“交流”并控制身體的肌肉。
在研究中,美國布朗大學的赫爾曼·范登堡教授首先通過活體解剖方法從成人志愿者那兒收集了很多肌肉干細胞。中佛羅里達大學的納丁·郭進行了一系列實驗,利用不同濃度的細胞和不同的時間間隔以及其他參數,出了使肌肉細胞和脊髓細胞“快樂”結合的zui合適環境,zui終獲得了這些神經肌肉結點。
該研究由美國國家衛生研究院(NIH)下屬的國家神經紊亂研究所資助,論文將發表在12月份的《生物材料》雜志上。該研究的、中佛羅里達大學的生物工程師詹姆斯·希克曼表示,他對這項研究的未來非常樂觀,傳統的動物測試方法不僅緩慢、昂貴,而且常常失敗,阻礙了新藥研制和面世的進程。
美國國家衛生研究院、美國國防部研究計劃局以及美國食品和藥物管理局都在加速研制“人體芯片”模型,現在,投入該領域的資金至少有1.4億美元。這些研究團隊的目的是出一些包含有各種各樣相互連接的小型器官的系統,采用實際中使用的方式來模擬人體功能。科學家們將可以借助這些系統,在藥物安全且合乎倫理地進行人體臨床測試之前,先在人的細胞上測試其效果。這項技術有望比在老鼠和其它動物身上進行測試更加。
除了用來研制人體芯片模型,神經肌肉結點本身也是非常重要的研究工具,它們在肌萎縮性側束硬化癥、脊髓受損以及其他退化性疾病等中也扮演著重要角色。科學家們表示,在更廣泛的基于芯片的模型被研制出來之前,技術能被用于測試治療這些疾病的新藥或其他療法。
Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system
Xiufang Guoa, Mercedes Gonzaleza, Maria Stancescua, b, Herman H. Vandenburghc, James J. Hickmana, d, ,
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were compley differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair.